Darstellung, Struktur und Stereoisomerie von 1,3-Di-*tert*-butyl-1,3,2,4-diazadistibetidinen

Bernd Ross*, Johannes Belz und Martin Nieger

Anorganisch-Chemisches Institut der Universität Bonn, Gerhard-Domagk-Straße 1, D-5300 Bonn 1

Eingegangen am 13. November 1989

Key Words: 1,3,2,4-Diazadistibetidines, 1,3-di-tert-butyl- / Geometrical isomers

Synthesis, Structure, and Stereoisomerism of 1,3-Di-tert-butyl-1,3,2,4-diazadistibetidines

Starting from 1,3-di-tert-butyl-2,4-dichloro-1,3,2,4-diazadistibetidine a series of 1,3,2,4-diazadistibetidines $[R - SbN - tBu]_2$ with R = OMe (2), OPh (3), OtBu (4), N(Tms)₂ (5), P(Tms)₂ (6), Me (7), and tBu (8) has been synthesized. The NMR spectra

Zur Frage der geometrischen Isomerie bei substituierten Diazadiphosphetidinen wurden in den letzten Jahren zahlreiche Untersuchungen durchgeführt^{1,2)}. Als maßgebend für das bevorzugte Auftreten der *cis*- oder *trans*-Konformation erwies sich das Substitutionsmuster des P(III)-N-Vierrings (Schema 1).

Schema 1

Wir berichten hier über die *cis/trans*-Isomerie der analogen Sb(III)-N-Ringsysteme. Untersucht wurden Diazadistibetidine mit gleichem Substitutionsmuster wie bekannte Diazadiphosphetidine. Dabei interessierte vor allem, wie sich der Ersatz der P-Atome durch die größeren Sb-Atome auf die relativen Stabilitäten der beiden Konformeren des Vierringsystems auswirkt.

I. Darstellung/Isomerentrennung

Die Diazadistibetidine 2-8 wurden durch Umsetzung des bekannten 1,3-Di-*tert*-butyl-2,4-dichlor-1,3,2,4-diazadistibetidins (1) mit Lithiumorganylen, Alkalialkoholaten sowie Lithiumbis(trimethylsilyl)amid bzw. -phosphid erhalten. Die Reaktionen wurden in Diethylether bei -78 °C durchgeführt (Schema 2).

2-8 sind in allen gängigen Lösungsmitteln mit Ausnahme von Acetonitril mäßig bis gut löslich, bei tiefen Temperaturen können die Verbindungen mit Ausnahme von 7 aus Petrolether (40-60°C) kristallin erhalten werden. Die Massenspektren sämtlicher Verbindungen zeigen entsprechend der bereits von Diazadiphosphetidinen bekannten prove most of the reaction products to be mixtures of geometrical isomers. The structure of *trans*-tetra-*tert*-butyldiazadistible dia was confirmed by X-ray structure determination.

Schema 2 (Tms = Trimethylsilyl)

	[R-SbN-tBu]2	Umsetzung von	Anzahl der nach-	
	R =	$[Cl-SbN-tBu]_2$ mit	gewiesenen Isomeren	
2	OMe	MeONa	1	
3	OPh	PhONa	2	
4	OtBu	t BuOK	2	
5	N(Tms) ₂	(Tms) ₂ NLi	2	
6	P(Tms)2	(Tms) ₂ PLi	1	
7	Me	MeLi	1	
8	t Bu	t Buli	2	

Zerfallscharakteristik³⁾ eindeutig die Vierringstruktur an. Hinweise auf die Entstehung von monomeren Iminostibanen $[R^1 Sb = NR^2]$ wurden nicht gefunden.

Die Reaktionsgemische wurden jeweils unmittelbar nach der Umsetzung NMR-spektroskopisch untersucht. Dabei wurde für das Methoxy- (2), Bis(trimethylsilyl)phosphino-(6) und Methylderivat (7) jeweils nur ein Isomer gefunden. In allen übrigen Fällen ließen sich anhand der NMR-Signale zwei Isomere der betreffenden Diazadistibetidine nachweisen. Bei längerem Stehenlassen der Lösungen stellt sich bei dem Di-tert-butoxy- (4) und dem Bis[bis(trimethylsilyl)amino]diazadistibetidin 5 ein Gleichgewicht zwischen den beiden Konformeren ein. Bei der Phenoxyverbindung 3 und dem Tetra-tert-butyldiazadistibetidin 8 erfolgt dagegen eine quantitative Umlagerung zu jeweils einem einzigen Isomer. Die Trennung der isomeren Diazadistibetidine gelang im Falle der Tetra-*tert*-butylverbindung **8**. Hier kristallisierte bei geeigneter Lösungsmittelmenge zunächst ein Isomer in Form tiefroter Prismen aus, während das zweite, thermodynamisch bevorzugte Isomer erst bei weiterem Einengen in Form gelber Kristalle anfiel.

II. Konformationszuordnung

cis- und trans-Form der Diazadiphosphetidine zeigen charakteristische Unterschiede in ihren ³¹P-NMR-Spektren, was vielfach zur Konformationszuordnung genutzt wurde¹⁾. Zur Unterscheidung der beiden isomeren Formen sind neben ³¹P-Verschiebungen auch die ¹³C- und ¹H-Verschiebungen der am Ringstickstoff gebundenen Organylreste geeignet. So unterscheiden sich die Signale des quartären C-Atoms der tert-Butylgruppe am Ringstickstoff um $\delta =$ 0.2-0.8, die der tert-Butyl-, Methyl- oder Trimethylsilylprotonen an gleicher Position um 0.05-0.3 ppm ³⁻⁶⁾. Dabei zeigt jeweils die trans-Form sowohl im ¹³C- als auch im ¹H-Spektrum das bei höherem Feld auftretende Signal.

Im Unterschied zu den Diazadiphosphetidinen ergab die NMR-spektroskopische Untersuchung der dargestellten Diazadistibetidine für die beiden isomeren Formen gegenläufiges Verhalten von ¹³C- und ¹H-Verschiebung. Das Isomer mit der hochfeldverschobenen ¹³C-Resonanz zeigt jeweils ein bei tieferem Feld liegendes Protonensignal. Eine direkte Übertragung der auf Diazadiphosphetidine angewandten NMR-spektroskopischen Konformationszuordnung auf die isomeren Diazadistibetidine war daher nicht möglich.

Um eine eindeutige Zuordnung der NMR-spektroskopischen Daten zu *cis*- und *trans*-Form der Diazadistibetidine durchführen zu können, isolierten wir eines der Isomeren des Tetra-*tert*-butyldiazadistibetidins **8** und bestimmten dessen Kristallstruktur. Die Röntgenstrukturanalyse für das rote Isomer **8a** ergab eindeutig *trans*-Anordnung für die Antimon-gebundenen *tert*-Butylreste⁷⁾. Dieses Isomer zeigt das ¹³C-NMR-Signal bei höherem Feld und das Protonensignal bei tieferem Feld als die zugehörige *cis*-Verbindung. Überträgt man diesen Befund auf die übrigen in zwei isomeren Formen anfallenden Diazadistibetidine, so können die in Tab. 1 aufgeführten Zuordnungen der NMR-Daten zu *cis*und *trans*-Form getroffen werden.

Im Falle der Bis[bis(trimethylsilyl)amino]-Verbindung 5 steht die getroffene Zuordnung in Übereinstimmung mit fol-

Tab. 1. ¹³C- und ¹H-NMR-Verschiebungen von 1,3-Di-*tert*-butyl-1,3,2,4-diazadistibetidin-Isomerenpaaren. Die betrachteten Atome sind durch Kursivdruck angegeben. Messung in [D₆]Benzol (* in CDCl₃)

		δ(C)	δ(Η)	
$[(C_6H_5O)SbN(C(CH_3)_3)]_2$	3a	53.99	1.10	t r ans
	3b	66.08	1.03	cis
[((CH ₃) ₃ CO)SbN(C(CH ₃) ₃)] ₂	4a	54.01	1.18*	trans
	4b	54.30	1.06*	cis
${[((CH_3)_3Si)_2N]SbN(C(CH_3)_3)}_2$	5a	54.33	1.33	trans
	5b	56.68	1.13	cis
$[((CH_3)_3)SbN(C(CH_3)_3)]_2$	8a	52.63	1.56	trans
	8b	53.48	1.32	cis

gendem Befund: Das bei der Reaktion zunächst fast ausschließlich erhaltene Isomer **5a** zeigt im ¹H-NMR-Spektrum erwartungsgemäß drei Signale gleicher Intensität. Nach einiger Zeit entsteht in der Lösung zusätzlich **5b**, das neben dem Singulett der *tert*-Butylprotonen nur noch ein weiteres Signal für alle vier Trimethylsilylgruppen ergibt. Die Konformationszuordnung ergibt sich in diesem Fall aus einem Vergleich mit den NMR-spektroskopischen Daten des *trans*-2,4-Bis[bis(trimethylsilyl)amino]-1,3-bis(trimethylsilyl)-1,3,2,4-diazadiphosphetidins, dessen Konformation durch Röntgenstrukturanalyse gesichert ist⁸). Im NMR-Spektrum des Phosphetidins finden sich analog dem Stibetidin **5a** drei Protonensignale gleicher Intensität, so daß letzterem ebenfalls die *trans*-Konformation zuzuordnen ist.

Ein der cis-Form **5b** analoges NMR-Spektrum mit zwei Signalen im Intensitätsverhältnis 1:2 zeigt die in Form nur eines Isomers isolierbare [Bis(trimethylsilyl)phosphino]-Verbindung **6**, in der folglich die cis-Konformation vorliegt.

Das geschilderte Verfahren der NMR-spektroskopischen Zuordnung über die relativen ¹³C- bzw. ¹H-NMR-Signallagen der ringstickstoffgebundenen *tert*-Butylgruppen ist selbstverständlich nicht auf Fälle anwendbar, in denen nur ein Isomer vorliegt, wie bei den Verbindungen 2 und 7. In Tab. 2 sind die für die von uns untersuchten Diazadistibetidine erhaltenen Aussagen zur Konformation den Befunden bei analogen Phosphetidinen gegenübergestellt.

Tab. 2. Konformationen analoger 1,3,2,4-Diazadistibetidine und -phosphetidine

[(R)ENC(CH ₃)	3]2	Konformatio	on
R		E = Sb	$\mathbf{E} = \mathbf{P}$
Methoxy	2	(ein Isomer)	trans (50%) \rightleftharpoons cis (50%) ⁴⁾
Phenoxy	3a/3b	$(trans) \rightarrow cis$	
tert-Buloxy	4a/4b	trans (10%) \rightleftharpoons cis (90%)	cis ⁴⁾
N(Tms) ₂	5a/5b	trans (60%) \rightleftharpoons cis (40%)	trans ⁸⁾
$P(Tms)_2$	6	cis	_
Methyl	7	(ein Isomer)	cis ⁹⁾
tert-Butyl	8a/8b	$(trans) \rightarrow cis$	cis ¹⁰⁾
Methyl tert-Butyl	0 7 8a/8b	(ein Isomer) (trans) $\rightarrow cis$	— cis ⁹⁾ cis ¹⁰⁾

III. Strukturdiskussion von 8a

Das Molekül besitzt im Festkörper C_i -Symmetrie. Daraus folgt die Planarität des Sb₂N₂-Vierrings. Die Antimonatome sind pyramidal koordiniert, die Stickstoffatome näherungsweise planar. Die zwei tertiären C-Atome der *trans*-konfigurierten Sb-tert-Butylgruppen sind um jeweils 71.9°, die der *N*-tert-Butylgruppen um 12.7° aus der Ringebene herausgeknickt. Die Ebenen C(5)Sb(1)Sb(1a)C(5a) bzw. C(1)N(1)-N(1a)C(1a) bilden mit dem Sb₂N₂-Vierring einen Winkel von 93.0 bzw. 94.7°. Die SbN-Bindungslänge ist mit 2.05 Å leicht gegenüber bisher gefundenen SbN-Bindungen (2.06 bis 2.10 Å)^{11,12} verkürzt. Die transanularen Winkel betragen am Antimon 78.3(2) und am Stickstoff 101.9(2)°. In den analogen *trans*-1,3,2,4-Diazadiphosphetidinen^{8,13-16}, die alle im Festkörper C_i -Symmetrie und einen planaren P₂N₂-Ring aufweisen, finden sich transanulare Winkel von 79-82° am

Abb. 1. Molckülstruktur von **8a**. Ausgewählte Bindungslängen [Å] und -winkel [°]: Sb(1)-N(1) 2.043(5), Sb(1)-N(1a) 2.051(4), Sb(1)-C(5) 2.252(6), N(1)-C(1) 1.481(6); N(1)-Sb(1)-N(1a) 78.3(2), Sb(1)-N(1)-Sb(1a) 101.7(2), N(1)-Sb(1)-C(5) 105.6(2), N(1a)-Sb(1)-C(5) 101.9(2), Sb(1)-N(1)-C(1) 128.9(4), Sb(1a)-N(1)-C(1) 127.2(4)

Phosphor bzw. $98-101^{\circ}$ am Stickstoff. Besonders ausgeprägt ist die Analogie zu *trans*-2,4-Di-*tert*-butyl-1,3-dimethyl-1,3,2,4-diazadiphosphetidin¹⁶). Die Verbindung ist im Grundgerüst isostrukturell zu **8a**. Beim Ersatz der P- durch Sb-Atome ändern sich die Bindungswinkel kaum.

Experimenteller Teil

Sämtliche Arbeiten wurden unter Ausschluß von Luft und Feuchtigkeit unter Inertgas (Argon) durchgeführt. – ¹H-NMR: Varian EM 390 bzw. Bruker WH 90. – ¹³C-NMR: Varian FT 80 A (20 MHz), ¹H-breitbandentkoppelt aufgenommen, externer Standard TMS. – ³¹P-NMR: Varian CFT 20, externer Standard 85proz. H₃PO₄. Lösungsmittel, wenn nicht anders vermerkt, [D₆]Benzol. – Massenspektren: Kratos MS 30/MS 50 bzw. VG 12–250, 70 eV-Direkteinlaß. Die angegebenen Massenzahlen beziehen sich auf die häufigste Isotopenverteilung. – Elementaranalysen: Mikroanalytisches Labor E. Pascher, Remagen-Bandorf. – 1,3-Di-*tert*-butyl-2,4-dichlor-1,3,2,4-diazadistibetidin (1)¹⁷⁾ und Lithium-bis(trimethylsilyl)phosphid¹⁸⁾ wurden nach den in der Literatur beschriebenen Methoden dargestellt.

Allgemeine Vorschrift zur Darstellung der Verbindungen 2–8: Man suspendiert 2.0 g (4.3 mmol) Dichlordiazadistibetidin 1 in 90 ml Diethylether, kühlt auf -78 °C ab und tropft die doppelte molare Menge (5% Überschuß) des in Ether bzw. Hexan gelösten Lithiumsalzes zu (6, 8: Lichtausschluß; 3–5: Zugabe als Feststoff, Umsetzung bei Raumtemp.). Die Suspension wird 2 h nachgerührt, dann läßt man auf Raumtemp. erwärmen, entfernt die Lösungsmittel i. Vak. und nimmt mit 20 ml Petrolether (40–60 °C) auf. Den Niederschlag läßt man ca. 12 h absitzen, dekantiert die überstchende klare Lösung und kristallisiert bei -78 °C (7: Einengen der klaren Lösung, rasche Destillation bei 80 °C/10⁻³ Torr).

1,3-Di-tert-butyl-2,4-dimethoxy-1,3,2,4-diazadistibetidin (2): Umsetzung von 2.1 g (4.6 mmol) 1 mit 0.52 g (9.7 mmol) Natriummethanolat. Ausb. 0.70 g (34%), farblose Kristalle, Schmp. 134-136 °C. - ¹H-NMR: $\delta = 1.00$ [s, 9H, C(CH₃)₃], 3.70 (s, 3H, OCH₃). - ¹³C-NMR: $\delta = 34.16$ [s, C(CH₃)₃], 49.42 (s, OCH₃), 54.05 [s, C(CH₃)₃]. - MS: m/z (%) = 433 (100) [M⁺ - CH₃], 386 (53) [M⁺ - 2 OCH₃], 371 (60) [M⁺ - 2 OCH₃, - CH₃), 57 (65) [*t*Bu] und weitere Fragmente.

cis/trans-1,3-Di-tert-butyl-2,4-diphenoxy-1,3,2,4-diazadistibetidin (**3a/3b**): Umsetzung von 1.8 g (3.9 mmol) **1** mit 0.96 g (8.3 mmol) Natriumphenolat. Ausb. 0.60 g (28%), farblose Kristalle, Schmp. (**3a**) 126-128°C. - ¹H-NMR: **3a**: $\delta = 1.10$ [s, 9H, C(CH₃)₃], **3b**: $\delta = 1.03$ [s, 9H, C(CH₃)₃], **3a/3b**: $\delta = 6.73-7.42$ (m, 10H, OPh). - ¹³C-NMR: **3a**: $\delta = 34.50$ [s, C(CH₃)₃], **53.99** [s, C(CH₃)₃]; **3b**: $\delta = 35.23$ [s, C(CH₃)₃], **6**6.08 [s, C(CH₃)₃]; **3a/3b**: $\delta = 120.78$ (s, OPh), 121.11 (s, OPh), 129.84 (s, OPh), 160.43 (s, OPh). - MS: m/z (%) = 572 (0.2) [M⁺], 479 (100) [M⁺ - OPh], 421 (52) [M⁺ - OPh, - tBu], 386 (74) [M⁺ - 2 OPh], 57 (78) [tBu⁺] und weitere Fragmente.

 $C_{20}H_{28}N_2O_2^{121}Sb_2$ Ber. 570.0242 Gef. 570.0234 (MS)

cis/trans-2,4-Di-tert-butoxy-1,3-di-tert-butyl-1,3,2,4-diazadistibetidin (4a/4b): Umsetzung von 1.9 g (4.2 mmol) 1 mit 0.98 g (8.7 mmol) Kalium-tert-butylat. Ausb. 1.1 g (49%), farblose Kristalle, Schmp. 106-108 °C. - ¹H-NMR (CDCl₃): 4a: $\delta = 1.18$ [s, 9H, NC(CH₃)₃], 1.32 [s, 9H, OC(CH₃)₃]; 4b: $\delta = 1.06$ [s, 9H, NC(CH₃)₃], 1.20 [s, 9H, OC(CH₃)₃]. - ¹³C-NMR: 4a: $\delta = 34.48/$ 34.84 [s, OC(CH₃)₃], NC(CH₃)₃], 54.01 [s, NC(CH₃)₃], 72.98 [s, OC(CH₃)₃], 4b: $\delta = 33.98/35.56$ [s, OC(CH₃)₃/NC(CH₃)₃], 54.30 [s, NC(CH₃)₃], 74.20 [s, OC(CH₃)₃]. - MS: m/z (%) = 532 (1) [M⁺], 517 (64) [M⁺ - CH₃], 459 (38) [M⁺ - OtBu], 403 (45) [M⁺ - OtBu, - Isobuten], 57 (100) [tBu⁺] und weitere Fragmente.

 $C_{16}H_{36}N_2O_2^{123}Sb_2$ Ber. 534.0860 Gef. 534.0862 (MS)

cis/trans-2,4-Bis[bis(trimethylsilyl) amino]-1,3-di-tert-butyl-1,3,2,4-diazadistibetidin (**5a/5b**): Umsetzung von 1.9 g (4.2 mmol) 1 mit 1.45 g (8.7 mmol) Lithium-bis(trimethylsilyl)amid. Ausb. 2.2 g (74%), schwach grünlichgelbe Kristalle, Schmp. (**5a**) 214°C. – ¹H-NMR: **5a**: δ = 0.43 [s, 9H, N(Tms)₂], 0.76 [s, 9H, N(Tms)₂], 1.33 [s, 9H, C(CH₃)₃]; **5b**: δ = 0.23 [s, 18H, N(Tms)₂], 1.13 [s, 9H, C(CH₃)₃]. – ¹³C-NMR: **5a**: δ = 5.99 (s, SiCH₃)/6.41 (s, SiCH₃), 34.27 [s, C(CH₃)₃], 54.33 [s, C(CH₃)₃]; **5b**: δ = 6.98 (s, SiCH₃), 36.58 [s, C(CH₃)₃], 56.68 [C(CH₃)₃]. – MS: m/z (%) = 706 (0.5) [M⁺], 546 (100) [M⁺ − N(Tms)₂], 130 (88) [N(Tms)[±]₂ − 2 CH₃] und weitere Fragmente.

cis-2,4-Bis[bis(trimethylsilyl)phosphino]-1,3-di-tert-butyl-1,3,2,4diazadistibetidin (6): Umsetzung von 1.8 g (3.9 mmol) 1 mit 1.5 g (82 mmol) Lithium-bis(trimethylsilyl)phosphid. Ausb. 1.4 g (48%), extrem empfindliche rote Kristalle, Schmp. >175 °C (Zers.). – 1H-NMR: $\delta = 0.65$ [m, 18H, P(Tms)₂], 1.43 [s, 9H, C(CH₃)₃]. – ¹³C-NMR: $\delta = 4.88$ (m, SiCH₃), 33.68 [t, J = 3.8 Hz; PSbNC(CH₃)₃], 55.44 [t, J = 1.8 Hz; PSbNC(CH₃)₃]. – ³¹P-NMR: $\delta = 155.94$ (s). – MS: m/z (%) = 563 (33) [M⁺ – N(Tms)₂, – CH₃], 386 (46) [M⁺ – 2 N(Tms)₂], 73 (100) [Tms⁺] und weitere Fragmente.

1,3-Di-tert-butyl-2,4-dimethyl-1,3,2,4-diazadistibetidin (7): Umsetzung von 6.0 g (13.1 mmol) 1 mit 17.3 ml (27.6 mmol) einer 5proz. Methyllithium-Lösung in Diethylcther. Ausb. 1.5 g (28%) einer gelben Flüssigkeit, Sdp. 70–75 °C/10⁻³ Torr. – ¹H-NMR: $\delta = 1.03$ [s, 9H, C(CH₃)₃], 1.19 (s, 3H, SbCH₃). – ¹³C-NMR: $\delta = 29.27$ (s, SbCH₃), 33.05 [s, C(CH₃)₃], 52.98 [s, C(CH₃)₃]. – MS: m/z (%) = 416 (7) [M⁺], 401 (100) [M⁺ – CH₃], 386 (66) [M⁺ – 2 CH₃], 330 (25) [M⁺ – 2 CH₃, – Isobuten] und weitere Fragmente. C₁₀H₂₄N₂Sb₂ (415.8) Ber. C 28.89 H 5.82 N 6.74

Gef. C 29.04 H 5.76 N 6.80

trans-1,2,3,4-Tetra-tert-butyl-1,3,2,4-diazadistibetidin (8a): Umsetzung von 2.2 g (4.8 mmol) 1 mit 5.1 ml (10.1 mmol) einer 15proz. tert-Butyllithium-Lösung in Pentan. Ausb. 0.30 g (13%), rote Kristalle, Schmp. 72–80°C (Zers.). – ¹H-NMR: δ = 1.05 [s, 9H, Sb(C(CH₃)₃], 1.56 [s, 9H, NC(CH₃)₃]. – ¹³C-NMR: δ = 28.27 [s,

Tab. 3. Atomkoordinaten (\times 10⁴) und äquivalente isotrope thermische Parameter ($Å^2 \times 10^3$) von **8a**. Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen Uij-Tensors

	x	у	z	U(eq)
$\frac{1}{Sb(1)}$	1485(1)	5218(1)	4492(1)	40(1)
N(1)	854(5)	4913(4)	6241(4)	42(1)
ccī	1815(6)	4545(5)	7592(5)	48(2)
C(2)	1160(10)	5032(7)	8699(7)	80(3)
C(3)	3444(8)	4981(5)	7793(8)	66(2)
C(4)	1803(7)	3283(5)	7730(6)	65(2)
cisí	2275(5)	3564(5)	3875(5)	50(2)
c(6)	1141(7)	2624(5)	3879(7)	68(2)
C(7)	2491(8)	3721(7)	2443(6)	79(3)
C(8)	3856(6)	3297(6)	4852(6)	64(2)

SbC(CH₃)₃], 34.87 [s, NC(CH₃)₃], 44.32 [s, SbC(CH₃)₃], 52.63 [s, $NC(CH_3)_3$]. - MS: m/z (%) = 443 (43) [M⁺ - tBu], 387 (76) $[M^+ - tBu, - Isobuten]$, 386 (73) $[M^+ - 2 tBu]$, 330 (35) $[M^+ - 2 tBu, - Isobuten]$, 57 (100) $[tBu^+]$ und weitere Fragmente.

> C₁₆H₃₆Sb₂N₂ (499.9) Ber. C 38.44 H 7.41 N 5.60 Gef. C 38.96 H 7.26 N 5.51

cis-1,2,3,4-Tetra-tert-butyl-1,3,2,4-diazadistibetidin (8b): Einengung der Mutterlauge von 8a auf 15 ml. Ausb. 0.50 g (21%), gelbe Kristalle, Schmp. $51 - 60^{\circ}$ C (Zers.). $- {}^{1}$ H-NMR: $\delta = 1.13$ [s, 9H, SbC(CH₃)₃], 1.32 [s, 9H, NC(CH₃)₃]. - ¹³C-NMR: δ = 28.50 [s, SbC(CH₃)₃], 34.27 [s, NC(CH₃)₃], 38.92 [s, SbC(CH₃)₃], 53.48 [s, $NC(CH_3)_3$]. - MS: siehe 8a.

Strukturbestimmung von 8a¹⁹): Ein roter Einkristall, aus Petrolether (40-60°C) auskristallisiert, wurde auf einem Nicolet-R3m-Vierkreis-Diffraktometer mit graphitmonochromatisierter Mo- K_{α} -Strahlung ($\lambda = 0.71069$ Å) vermessen. Von 1853 symmetrieunabhängigen Reflexen wurden 1646 Reflexe mit $|F| > 4\sigma(F)$ zur Strukturlösung (Patterson-Methode) und -verfeinerung verwendet. Die Nicht-Wasserstoffatome wurden anisotrop, die H-Atome mit einem Reiter-Modell verfeinert. Strukturlösung und -verfeinerung wurden mit dem SHELXTL-Programmsystem²⁰⁾ durchgeführt. Kristallgröße $0.8 \times 0.8 \times 0.8 \text{ mm}^3$; monoklin; Raumgruppe $P2_1/n$ (Nr. 14); Summenformel $C_{16}H_{36}N_2Sb_2$; Molekülmasse 500.0; a = 9.054(4), b =11.981(7), c = 10.166(7) Å; $\beta = 105.69(4)^\circ$, V = 1.062 nm³, Z =2, μ (Mo- K_{α}) = 2.56 mm⁻¹, Q_{ber} = 1.56 g cm⁻³, 2 Θ_{max} = 50°, max. Restelektronendichte 1.65 e/Å³ (am Antimonatom), 91 verfeinerte Parameter, R = 0.042, $R_w = 0.040$ ($w^{-1} = \sigma^2(F) + 0.0005 F^2$).

CAS-Registry-Nummern

1: 71428-31-4 / 2: 125611-85-0 / 3a: 125611-86-1 / 3b: 125611-91-8 / 4a: 125611-87-2 / 4b: 125611-92-9 / 5a: 125611-88-3 / 5b: 125611-93-0 / 6: 125640-39-3 / 7: 125611-89-4 / 8a: 125611-90-7 / 8b: 125611-94-1

- ¹⁾ Übersichtsartikel: R. Keat, Top. Curr. Chem. 102 (1982) 89. ²⁾ A. Kamil, M. R. Bond, R. D. Willett, J. M. Shreeve, Inorg. Chem.
- 26 (1987) 2829. ³⁾ W. Zeiß, C. Feldt, J. Weis, G. Dunkel, Chem. Ber. 111 (1978) 1180.
- ⁴⁾ R. Keat, D. S. Rycroft, D. G. Thompson, J. Chem. Soc., Dalton Trans. 1979, 1224.
- ⁵⁾ R. Keat, D. S. Rycroft, D. G. Thompson, J. Chem. Soc., Dalton Trans. **1980**, 321.
- ⁶⁾ O. J. Scherer, G. Schnabl, Angew. Chem. 88 (1976) 845; Angew. Chem. Int. Ed. Engl. 15 (1976) 772.
- ⁷⁾ Von 8b wurden keine zur Vermessung geeigneten Einkristalle erhalten.
- ⁸⁾ E. Niecke, W. Flick, S. Pohl, Angew. Chem. 88 (1976) 305; Angew. *Chem. Int. Ed. Engl.* **15** (1976) 309. Siehe auch Lit.². ⁹⁾ O. J. Scherer, G. Schnabl, *Chem. Ber.* **109** (1976) 2996.
- ¹⁰⁾ E. Niecke, D. Gudat, E. Symalla, Angew. Chem. 98 (1986) 817; Angew. Chem. Int. Ed. Engl. **25** (1986) 834. ¹¹⁾ C. A. Stewart, R. L. Harlow, A. J. Arduengo, J. Am. Chem. Soc.
- 107 (1985) 5543.
- ¹²⁾ O. J. Scherer, G. Wolmershäuser, H. Conrad, Angew. Chem. 95 (1983) 427; Angew. Chem. Int. Ed. Engl. 22 (1983) 404.
- ¹³⁾ H. Richter, E. Fluck, H. Riffel, H. Hess, Z. Anorg. Allg. Chem. 486 (1982) 177.
- ¹⁴⁾ H. J. Chen, R. Haltiwanger, T. G. Hill, M. L. Thompson, D. E. Coons, A. D. Norman, *Inorg. Chem.* 24 (1985) 4725. ¹⁵⁾ W. Schwarz, H. Hess, W. Zeiß, Z. Naturforsch., Teil B, 33 (1978)
- 305
- ¹⁰ S. Pohl, Z. Naturforsch., Teil B, 34 (1979) 256.
 ¹⁷ N. Kuhn, O. J. Scherer, Z. Naturforsch., Teil B, 34 (1979) 888.
- ¹⁸⁾ G. Fritz, W. Hölderich, Z. Anorg. Allg. Chem. 422 (1976) 104.
 ¹⁹⁾ Weitere Einzelheiten zu der Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Informationen mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54261, der Autoren und des Zeitschriftenzitats angefordert werden.
- ²⁰⁾ G. M. Sheldrick, SHELXTL, An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data, Univ. Göttingen 1978; G. M. Sheldrick, SHELXTL User Manual. Nicolet XRD Corp., Freemont/California 1981.

[371/89]